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ABSTRACT
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". ON THE USE OF REPLACEMENTS TO EXTEND SYSTEM LIFE

by

C. Derman, Columbia University
G. J. Lieberman, Stanford University

S. M. Ross, University of California, Berkeley

1. Introduction

The literature dealing with the scheduling of replacements and/or

inspections is very extensive. See [2] for a comprehensive set of

references.

- e n-hfs--peper-.ve ar concerned with the following question. A system

has one vital component for which there are n spares. Whenever the

vital component fails, the system fails. -W would like to schedule the

replacement of the vital component with the spares so as to prolong the

life of the system as much as possible. This problem can be generalized

to where there are several components in the system and the scheduling of

replacements refers to each of the components. /W deal mainly with the

first question but treat, to some extent, a special case of the second.

In- ihe next to final section we considers generalization which allows for

the vital component to fail a fixed number of times before causing the

system to fail.
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2. One Vital Component Problem

Assume a one component system. Let F, with F 1 1-F, denote the

life distribution of the component. We assume that its mean,

- f F(t)dt <
0 3

and that F has a continuous density f with support (O,T), 0 < T < ,

and we let

" r(t) =f(t)/F(t)

denote its failure rate function.

Suppose the system is put into operation at t 0 0, using an initial

component. There are n statistically identical spares that can be used

sequentially as replacements. The system fails whenever the component

that is currently in use fails. The idea is to judiciously replace the

component in use with an available spare in order to extend the life of

the system. We assume that once a component has been removed it cannot be

used again. Let S denote a replacement schedule, L the life of the

system, and EsL the expected life of the system as a function of S.

The problem of concern, here, is to determine the schedule S, and (or)

some of its properties, that maximizes ESL.IS
As will be evident there always exists an optimal schedule, although

it may not be unique. Let v denote the expected life of the system
n

given an optimal schedule of replacement of n spares. If n 0 0, there

is only one schedule; viz, the one that never replaces. Therefore,

-2-
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If n > 1, v satisfies the optimality equation

(1) v - max *(x)
n O<x<T n

where

x
(2) f tf(t)dt + F(x)(x + v,_,)

0

f F(t)dt + F(x) vnI.

0

Since, by assumption, 9 < , (x) is continuous at all x e [0,T].

Thus, 0 (x) can always be maximized, although not necessarily uniquely,
n

at x - Xn (say). The value, xn , is, in words, the optimal length of

time to use a component before replacing it when n spares are

available. If x - T, then the component is never replaced and v n .n n

If xn - 0, a component is immediately replaced, in which case vn - v n_.
It should be kept in mind that the system may fail before all n spaces

are used even though a schedule is optimal.

Proposition 1: v is nondecreasing in n.n

Proof: v > *n(0) v n>
* - n - n - 1  >1

Proposition 2: If v, - v0 , then v - v0 , n > 1.

In

Proof: Prom (1) and (2) we obtain, for n > 2,

-3-



(3) v -v =n(x)- (xn)
an - n n n-1 n-i

< n(xn) - (xn)

- F(X)(V - v)

Since Vn_- Vn_2 > 0, by Proposition 1 and 0 < F(xn) < 1, the

proposition follows.

Since t (0) - el(T) -, and from (1) and (2), it follows that

V1  v 0  if and only if

.9, x

(4) p > f F(t)dt + F(x)l , < x < T
0

or, equivalently, if and only if,

P< f (t)dt 0 < x < T

x F(x)

The above condition is often called the nev worse than used in expectation

(NWUE) for it states that the expected additional life of a used vital

component of age x is at least as large as the expected life of a new

one.

By considering the derivative of the right side of (4) we can see
1

that if f(O) - r(O) < -, then v1 > v O. On the other hand if F is

NWUE then x1  can equal T and v1 a v0. We shall assume for the

remainder, unless stated otherwise, that F is not NWUE and so v1 1 vO .

-4-
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Proposition 3: v > v v - v < v - v , and
n n-i' n n-i n-i n-2

0 < x <x < T, n > 2.
n - n-i

Proof: Since v1 > v0 , x1 * 0 or T. In a manner similar to

showing (3) we have

(5) vn -Vn_ F(nl)n_-V_ 2  , n > 2 .

If pr T for some n, thn vvvo which is contrere x <

for all n > 1, and, hence, F(x) > 0. Thus, it follows inductively from

(5) that v > v_, n > 1. If x = 0 for some n > 1, then v = vn n-i n n wn-i'

a contradiction of what has just been shown. Thus, x > 0, F(Xn) < 1,

n > 1. From (3) and the positivity of v - v it follows that
_ - n n-i'

v n- < vn- vn 2 , n > 2. Finally, from (3) and (5) and what has

just been shown, we have
-t

Fx> F x .n-i, P~xn ) F(C _ ) , n>2 ,

from which x < x n > 2

As previously remarked, x need not be unique. However, let {x nn1 n

denote the set of values for which the maximum of n is obtained. The

proof of Proposition 3 shows the following

Corollary: max (x n  < min (Xin , n > 2.

* -5-
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Proposition 4: x satisfies

nn

n-l

and r cannot be decreasing at x n

Proof: From proposition 3, x is an interior point of the intervalj

n

-F(x) - f(K) v
1

- (x)(1 -r(x) v )

Thus, 0'(x) -0 only if r(x) -1/v However, if r(x) - ~ ad xn n-1* Vn-
Is a point of decrease of r, then 0' is increasing at x so that x

n

cannot be a relative maximum.

Corollary: x n x>n1.
n Xn-i

Proof: Proposition 3 asserts that vn~ > vn and allows the

possibility that x -x .However,
n n-i'

Lni r(x)

-r(x)

-1/v 2

is Impossible.

.-6-



The second derivative of *" is
n

0"(x) - -f(x) - f'(x) v

n n-

Thus, if x is a root of r(x) - and f'(x) > 0, then x is avn-l

relative maximum of * .
n

If F is IFR, then x is the unique root of r(x) = 1/v
n n-i

Because in this case, f(0) - r(O) < l/. In fact, from Proposition 3,

f(O) - r(O) < 1/v , n > 1.

If r is unimodal and has two roots to r(x) = 1/vn, then x is

the smaller of the roots; if r has the so called "bathtub" shape, then

x is the larger of the two roots.

*1 Proposition 5: lim v - v is finite or infinite according as f(0)

is positive or zero. Although x is not necessarily unique,

lin x - x* > 0, is a unique value.

Proof: If v1 M vO , then v -, n > 1, by Proposition 2. Suppose,

for the remainder of the proof, that vI - v0 > 0. Since, by Proposition

1 vl> v then lim v exists and is either finite or infinite. By
n no n n

Proposition 3 and the corollary following it, it is easily shown that

lim x exists and equals a unique non-negative value x* (say). Suppose

f(O) - r(O) > 0, x* - O, lia -. For e > 0, choose 6 > 0
n-o n

sufficiently small so that r(x) > E if x < 6. If vN > 1/c, then

1/v < c, Y n > which implies that x > 6 n > N, a contradiction

-7-



that X* 0 . Thus, under these circumstances lia v - is

impossible. Suppose f(O) -r(O) > 0, x* > 0. From Proposition 2

v -v (F(x )(v 1  v2  I
< F(x*)(v 1 - v n 2 )

< F (x*)(v 1 -v) n >2

Thus

urn v - V1 < -n(*)( - v0

n-2

F(x*t) (v

* Suppose, now, that f(0) -0. Consider the schedule S having equal P

*replacement intervals of length y with ny 1 equal to the

number of available components, including the initial one. Let L denote

the life of the system under S .Then it is easy to show that *
n
y

lim E(L)m
y+O

Since v > E(L) and v increases in n It follows that him v-
n n wny

If r(0) > l/.J, then x* > 0. For it is trivially true if x- T;

*and if x1 < T, then



. . ... . . .

r(x*) - li r(x )
n'w n-1

< 1/v
.4 0

The folloving is a sufficient condition for x* to equal 0.

Proposition 6: If F is a strictly new better than used (NBU(S))

distribution in the sense that

F(x)

then xi= 0.

Proof: Suppose F is NBU(S) and x* > 0. For each n let S be
4n

the schedule (xn/ 2, x/ 2 ' _ ... , Xl); i.e., the first two replacement

intervals of S are of length Xn/2 and optimal thereafter. Let

G (t) -F(t) t _

SF(Xn/2)F(t-Xn/2 ) , t > x/2

Note that

G (t) >7(t) ,t >ni n/

.Let v E LM. We have
oE
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v fn c dt +G(x)vof I n nn n-2

0

'S *

a contradiction that lim v < v.

Remark: The condition that F is NBU(S) is weaker than that F is

strictly IFR, i.e., that r(t) is strictly increasing.

Examples:

(i) Uniform (0,1). Here,

f(t) - 1

F(t) - t for 0 <t <

r(t) - 1/1-t

v M L n1/2 ,v, -5/8

*~0

Since, f(0) > 1, v < *.From Proposition 4

x n 1-v n-i

* and

-10-



-n2 + Vn-l((1 - vn-) + Vn-l)

(i-vn-1) 2

2 n--

2
-1/2( + v n n>1i -l

Some values of x and v will appear in Table 1. Since F isn n,'
1

NBU(S) we see that x* -0 and v - r-O)m-1.

(ii) Linear (0,1); specifically,

f(t) - 2t

2
F(t) t , for 0 < t <

2t
r(t) =  2

.1t

v 2/3 .
v0

Since, f(O) 0 0, v x -, X 0 and

2x
r(x) m n

1-x
n

- 1/Vn_

leading to the quadratic equation

2
Xn n-+2 v x -1-0

for which the only positive root is

-11-
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.. = vn n- 1 ".

U..--- , Thus, -

v 2 fn t2 dt + (1 - x )(x+v_) J
032
2/3"

- 213 + Xn)(X n + Vn).

The values of xn  and vn can be computed recursively, commencing

with v0 - 2/3.

(Ml) f(t) - 2(l t)

2
F(t) -2t t for o < t < 1

r(t) =

v 0  I A 1/3 .

Here, f(O) - 2; hence v < m. F is IFR with r(O) < ; thus

r(xn) -". n

1/v n-1  -

,;,2.: i.e., -

x - 2V .

Also,

2 2v ix (1 2/3 x)+(x -)(x + v)
n n n n n n-i

-12-
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The values of x and v can be calculated recursively. To find v, itn n-:

is easier to express v in terms of x* and solve for x* in the latter

equation after having let n * . Out of this procedure comes the O

equation

x* 2 (1/2 x*/3) - 0

from which

x*  0

is the only acceptable solution. Thus,

v =1/2

(iv) Two exponentials in parallel.

Let

t t
f(t) " 2e (1e- e :

t 2

F(t)= (1- e- 0 < t <

"" t t

r(t) " 2e- (1-e- 1i
1-(1-e-

v0  = 3/2

This case arises when the component comprising the system is a module

consisting of two independent components, each component having an

exponential distribution with mean one.

-13-



Since f(O) -0, liii v- The equation for obtaining x in

terms of v~~ is

x
-n x2e , n

n 1 n

- -(i-e n)2

Solving explicitly yields I-
2v -i1

L xn log n(v-1

Substituting this, in (2) yields, after some algebra,

VII 3/ +2(v n-i )2  v -3/2
V 3 2  2v -* 0

n-i

Numerical values for x and v appear in Table 2.n nh Since F is strictly IFR and thus NBU(S), X* -0 and

v 1 /r(0) --

-14-



3. Equal Interval Replacement Schedules

In this section we restrict the class of schedules to those having

replacement intervals of equal length. Let n(y) denote the expected
n

life of the system when y is the length of the interval. Let

4n "max 4(y)
Y

Let y denote a value of y such that

4 4(y)
n nn

It is seen from (7) below that such a value exists and is positive.

Notation from Sections 1 and 2 will be continued.

First, we note the recursive relation

tf(t) + +ynl(Y))

0

-4 F(t)dt + i(y) 4onl(y) , y < 0
0 

Also, by considering the difference between having n and n-l

spares, we have

(6)4,() -- 1- lf
n(Y)  

4, nly )  (y){ tf(t)dt + i(y)(y + ji) - } :

i n-ld(y){f F(t)dt -(y)}
0

=Fn-l,(y)(¢l(Y) -P

-15-
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On summing (6) we get

() n - - 4 n4yY -

IY (1-Fn(y)
( (t)dt -F(y)4)

) F(y)0

Proposition 7: If v1 > vo, then "n > n-1 n > I. If

vi=y 0 - then on Vo for n > 1.

Proof: From (7),

n- P- n(x1) -

1-F (x1 )
inv

F(x 1 ) (v1 -

>0

That is, 4n(yn) > I, n > 1, which from (7) implies
n >

Sn (yn) > 1

Thus, from (6)

4nF 4(Ynl)(¢l(Yn) - )

q

>0

-16-
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Suppose v1 4 . The above argument shows that (P> .±. However, since

v n> 4, and v -~ n > 1, by proposition 2, it follows that
* n- n

£n >
n

A reasonable conjecture is that for any set of maximizing values

(y)n Yn+l < y n, n > 1. We prove that this is, in fact, true.

First we need a well-known tool which will also be used in the next

section. Let g(Oi~y), i - 0, 1, be functions defined over a subset A

4 of the real numbers. Assume g(e1,y) have maximums y0  in A; i.e.,

g(eiye )max g(O1 ,y) ,i 0, 1
S yeA

*1 Lemma: If for every y' ,y" c A,y" > y', we have

(8) g(O1,y") -g(e0 1,y') < -'y g(80 ,y')

then Ye <ye0

Proof: We have, by definition,

g(G1,y) -g(e%,ye < 0 , y £A ,i - 0, 1.

Suppose y > ye ,y c A. Then, by hypothesis, with y -y", y8 o y

00

< 0



g(*e. y ) < g(O1Y)Y > Ye
YID 0

Therefore, y - y

We now show

Proposition 8: yn+l< yn n >1.

Proof: Let e = n + i, - 0, 1, so that in the lemmaJi

g( j y ) - log (* 1 (y) - ) -Fy)

-log (,(y) g ) -log F(y) + log (1 -F-n'i(y)),

i-0, 1

Let A be the set of y for which *1(y) - i > 0. Since, throughout, we

are assuming v1 > v0 , A is non-empty and, by (7) arni Proposition 7, con-

tains yn+i, i - 0, 1. However, for every y" > y'(y', y" c A) we have

-n+i
g(ei~y") - g(Oi~y') - log 1F(y") i-O, 1

_[ '(y, )

For (8) to hold it is sufficient that

log l1-(y) < log 1-Fn(Y") , y**> y'
-nI-I -n

1-F (y") 1-F (Y") " Y1-in+l (y') -- _7n(y,)

or equivalently,

-18-



1- n+l~y ") < 1-Fn+l(Y ' )

. z-Fn~y,) - _pn(y,.)

This inequality will hold if

1-Fn(y)

is non-increasing in y, or if

l n+ l

1-I.-

l-Z n

is increasing in Z for 0 < Z < 1. However, for n > 1,

i zn+l n kjn-l

n 
z

1-Zn k=O k=O

1+Zn/ n-zk.

k-O

n

k1

which is increasing in Z.

By Proposition 8 lir {yn} exists. We denote this limit by y*.
n- n

The expression 4'1(y) - 4 represents the difference in the expected

life if one spare is available compared to having none available when the

replacement is made at time y. In our notation, y1 - x, is the optimal

time to make such a replacement. We have as a result of Proposition 8 a

Corollary: 1(yn) - 4 is non-increasing in n.

-19-



Proof: Suppose for some n > 1 that

-y P > *i. 2  1

However, by Proposition 8, y 1 < y *Since the other factor in (7) is

decreasing in y, it would then follow that

(y cI > ) -( p
n n ~ > n n

a contradiction.

-20-



4. Relationship Between Optimal and Optimal Equal Interval Schedules

Proposition 9: lim l = lm vn.w n n-),w n

Proof: Consider the case of x* > 0. From (1) and (2) and

Proposition 5 on letting n * =, we have

'' X*

v f F(t)dt + F(x*)v
0

." i.e.,

V f F(t)dt

However, from (7) ,.:,

x
lim 4f (xi J (t)dt -F(x) tj, -vx

n- O'~) F(x) 0

Thus, in particular,

lim 4 > lim 4 (x*)
n., n--- n

x*

- f F(t)dt/F(x*)
0

On the other hand, since vn - , 4,

lim < V .

-21-
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Now suppose x* -0. We have by (7) that

n+W 0

hence,

x

urn 4 > urn f F(t)dt/F(x)

- /f(O)

If lini v m cD then, by Proposition 5, f(0) -0. Thus, lim4 -~ If
n +m nn-f.w

lrn v1 < ~,by Proposition 4,

1/v l ur 1/v
n*1m n-i

limr r(x)
n-w n

m r(0)

- f(0)

Thus,

lir n >V

Since urn 4 < v -v, the equality follows again.I

Let

4(y) limr 4' (y)

Y i(t)dt y> ,

-22-



""V -. '-- 4
WI

and

(y) - urn 0(Y)
n

-f F(t)dt + F(y)v , y > 0
_-' 0

.S

-N

Since 4n(y) + 4(y), y > 0, and 4,n(y) and 4,(y) are continuous,

then

4,(y*) " max 4(y)
y>O

V ,

if y* > 0. If v < , we have, for the same reasons, that

O(x*) - max 0(y)y>O

-jj
-

implying that

F(t)dt

f F(x*)
-: 0

By applying the lemma of Section 3, with

g(eO, y) - log (4n(y) -

and

g(9 1 , y) - log (4(y) -

in the same manner as in the proof of Proposition 8 we can show that if

y** > 0 and 4<y**) - max 4(y), then y** c A and
y>O

-23-
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S.

Thus,

~y** <y* .

Similarly, by letting

g(%o,Y) - n(y)

and

g- 8*(y)

if v < and x** > 0 is such that

4ix**) - max 0(y)
yO

then

x** < X , n! -- n

implying

x** < x*

Consequently, we can prove

Proposition 10: x* - y*

Proof: If x* > 0, y* > 0, then by the preceding statements x* and

y* are each the largest values that maximize (y) over (0,-). Thus,

x* - y*. We need only show that x* and y* are positive or zero

together. Suppose x* > 0. Then let y** = x* in the remarks preceding

Proposition 10 implying y* _ y** - x* > 0. Suppose y* > 0. Then

1/f(o) < 4,(y*) < * .

-24-
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then X'* > 0 since, by Proposition 4, x* -0 implies v 1 /f(0). If

4< y*) 1 /f(0)

then v -1/f(0). However x* is the largest value such that

-x* max 0(y)

1/lf(O) .

Therefore x* > y* >0.

Example:

Uniform (,)

_ +l(,Y)n (Y(lY))
-n~y 2 + (1 2 1-

2 (1+ ( (l y) )(1 y)}

Thus, y~ is that value of y that maximizes

n)

Letting Z -1-y, we see that

Zn ilyn HL)/

or

-25-



y -1- (l1/nl
Yn n-- n>

and

1 1 1/n

We can see directly, or using Proposition 9,P

lrn (I'- h v

Values of 4, and y are tabulated in Table 1.

n

-26-



5. The Expected Number of Spares Used

4 While there may be n spares available to extend the life of the

system, because of possible failure of the system before all spares are S

used, the actual number used is a random variable depending on F and the

schedule.

Let S = {Z Zn , ... , Z1, T) denote the schedule. Let u n
n

denote the expected number of spares used. Then, u satisfies the '

.: recursive relationship

(9) Un mF(Z )( +Un) , n >

u0 0

In case S is the equal interval schedule with interval length y,

then

(10) un - F(y) + F(y)U

n -kl
n-kFy)

k-l

iw)F~ (Y)F(y)

which can also be obtained from the geometric distribution.

Examples

(a) Uniform (0,1)

If the optimal schedule is used then (9) yields

-27-
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u-(1- x) + (1- u_ jU nXn ) i

SVn-l G+ u-) "

If the optimal fixed interval schedule is used, then (10) yields

n+l
1 1/n n 1 -

n 1/n
(11/n+l) 1)

( 1t 1/n1-(lln+l)I/

1 1/n n
_(/n+l) n -

These values will be tabulated in Table 1.

(b) Two exponentials in parallel.

In this case, the formula (9) for the optimal schedule yields,

(1 un ( 2 v -l 1) )1) + u , u0  O .

These values will be tabulated in Table 2. We shall be especially 4

interested in comparing these values with expected number of components

used in the situations described in Sections 6 and 7.

-28-
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6. Systems With More Than One Replaceable Component

In the previous sections it was assumed that when a replacement was

scheduled, the entire system was replaced. However, example (b) arose in

the context of the system consisting of a two independent component

module, each component having the same exponential life distribution.

This suggests that efficiencies can be gained by exploiting the structure

of the system and the individual life distributions of the components.

We concentrate, here, on the specific structure of example (b) and

consider schedules that call for the replacement of individual

components. A number, n, of spare components (as distinguished from spare

systems) are on hand. The objective is, still, to attempt to maximize the

expected life of the system.

To put the problem in a general context, a working system can be

thought of as being in state (s,t), meaning that s time units have

elapsed since it was known, either by replacement or deduction, that

component 1 was in working order. The same meaning is given to t for

component 2. The deduction that component 1 is working is made when the

inspection (which we assume takes place) of component 2 after it is

replaced reveals that it has failed, implying that component 1 is working,

and, because of its exponential character, is as good as a new component.

In state (s,t), at least one of the components is working.

Remark: For the above to be applicable we are assuming that:

a) inspection of a component is destructive (for otherwise, one would

continue to use a working component rather than replace it),

-29-
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b) inspection is informative in the sense that it tells us whether or

not the component was functioning Immediately before inspection.

Let w (s,t) denote the expected life of the system when, initially,

the state is (s,t), n spares are available, and an optimal replacement

schedule is used.

Special Case: Assume (s,t) = (0,0) and n - 1, and assume that

component 1 is optimally replaced at time Z1. Then

wl(O,0) - max {2 f ye-(1-e-)dy + e 2 Z(z + 3/2) + (l-e-Z)e-Z(z + 3/2)

+ e-Z(1 - e-Z)(Z + 1)}

-2 fI ye-Y(l - e-Y)dy + (5/2 + Z )e- 1 - (i + Z )e-

011

It is seen, in a straight forward manner, that

z-1e - 1/2

or

Z1 a log 2

from which It follow that

wi(O , 0) = 13/8

The Case of n > 1.

When n > 1, the problem of obtaining an optimal component replace-

ment schedule appears to be difficult to solve. For the purpose of, at

-30-
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least, achieving lower bounds on what could be accomplished by an optimal

schedule, we restrict ourselves to a subclass of schedules for which the

analysis is feasible.

We assume, initially, that (s,t) - (0,0) and consider schedules of

the following form: when n > 2, at time x component 1 is replaced and

then inspected. If the inspection reveals that the component was working,

then component 2 is also replaced. If the inspection shows that the

component was not working, then component 2 is left intact. When n - 1,

component 1 is replaced at time Z1 .

The rationale for the type of rule is based on the exponential life

distribution of the components, the parallel structure of the system, and

mathematical convenience. If, when the system is working, one component

*. is not functioning, then the other must be, and, since it is working it

must be, statistically speaking, equivalent to a new component. Both com-

ponents are replaced when the one inspected is functioning so that the

state is always (0,0) after a scheduled replacement. However, the

double replacement is not completely inefficient, for if the one inspected

is working there is an enhanced possibility (depending, of course, on

x ) that the other will have failed.
a

Let v denote the maximal life of the system when n spare com-n

ponents are available and the class of schedules is restricted to the

above stated class. Then v satisfies
n



v-max (r(x)) n > 2

- 13/8

vo -3/2 9

* where, for n > 2,

x
(11) i%(x) -2 f te-t(. e-t)dt

0

(1- (1 ex)2)fx + (1-)e + e v 2

* -2 fte(1 td+(1 -X 1- 2) n-2)+

x
+~ V2

*The derivative of %(x) is

v (X) -e-X{2v 1  1 )eX + 2 v -

By inspecting n'(x) it is clear that

x v +v 2

2v nl-1

-32-



2 Vl -1
xn "log n ~,n< 2

vn _  n-2 -2

If n 1, then x x -log 2.

On Substituting x in (11) we get, after some calculations, thatn

2v n_ - 1 -

To calculate u , the expected number of spare components used in the

life of the system, we have

u 0

x 1 2
u- - (i-e 1)

- 3/4

- ,- _

un  (1-e n)e (1 + U 1 ) (2 + 2 ) n > 2

The formulas for x v, and u are recursive and are readily cal-

n

culated numerically. (See Table 3.) In comparing xn ,vn and u with

Xn, v and u It should be kept in mind that n, in the former case,n n n

because the entire systm is replaced is, in fact, twice the number of

components of the latter case.

-33-
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7. The Option of Non-destructive Inspections

In Section 6 it uas assumed, presumably due to destructive S
inspections, that an inspection Implied a replacement. Here we assume

that inspections are not destructive so that if a component is found to be

working, it is continued in use. Without assuming inspection costs,

continuous surveillance would be optimal leading to an expected system

life equal to + 1. Instead of introducing inspection costs into the

model we shall derive formulas for computing the values of the charac-

teristics assuming the schedule derived in Section 6. In this way we can

compare destructive and non-destructive inspections with respect to a

fixed schedule.

Let u* denote the expected number of replacements made during the
n

life of the system. Then

e-X)2 x1' 'i1 e )
U- (1 - 0 ) + e- u* + 2e-1(1 -e )

* i.e.,

u So 2e-l1-e-)
1-

1 2x1

-2/3

For n >2,

u*- (1 - e 2xn u* + 2e n(l - n)(l +u*_ )n n .

i.e.,

-34-
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-* {2en(1 eJ '1 + U*1 }-I-

1-e

Let v* denote the expected life of the system. Then
n

-*3/2

x t t x
-* 2 f~ te-(1 - )dt + (1 (1 e x)2

n 0n

2x x x
n + 2  n l nv >

n n-

i.e., for n > 1,

- j*i 1 (1 -e) )dt + 2 eni -env*n

n 2x 0x-

1-2- n

Vaue of v an + can be recrsi e calae aae tabulatedi

n n

1-21

Vustalue gand in epcted lie fcrsaiven nalumbte ofd sare cabmponents.

On the other hand, In comparing the two parts of Table 3, non-destructive

-. rather than destructive inspection produces only a modest gain.

-35-
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8. Asymptotic Distribution of System Life

Let P (t) denote the probability that system life exceeds t whenn

n spares are available and an optimal replacement schedule is used. Let

P (t) denote the same probability when an optimal equal interval replace-
n

ment schedule is used. When x* - y* - 0 and v 1 4 l/f(0) > 0, it

would seem that the limiting distribution as n = of system life should

be exponential with rate f(O). That this is true depends on the

following.

Proposition 11:2

X I lim ny ni-I nm= nn

Proof: In the cases where x* 1 y* 0 0, the proposition is trivially

true. Also, since

n
v < 1 xj+

and

< ny + P
n n

the proposition is Immediate when v - 4- 0. Thus, consider the

remaining case where v - 4 - 1/f(O) < - and x* 1 y* - 0. Since the

2We are indebted to D. R. Smith for some remarks which were very helpful
in establishing this proposition.
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sequences {x }and {y) are non-increasing and because f is
n n

continuous of x - ,for any e > 0 there exists an N such that for

K(12) F(x)< (f(O) + C)X F(y)< (f(O)+ C)y
n -n' n -n

on iterating (5)

n-i
v vn~ > n1 F(x )(v -v) , n > 2

Since v < ~,lim (v -v ) 0 implying
nw n nt-i

* which, with (12), implies S' X .From (7), with y -y, on
Li-1in

letting n * 'one has that

-n
lim F(y)0

nw n

which, with (12), implies lim ny n

We now have

Proposition 12: If X* 0, then for every t > 0,

n n n-"

-f(O)t jf (O>

- 1 ,if f(O)-0

-37-



Proof: Fix t. From Proposition 11, = xj =  . Hence, for every
n

k there exists an N such that for n > N, IJ'k xj > t. Thus, since 'S

the xn's are decreasing the component in use at time t or before is

never older than xk .  Denote by r n(t), the failure rate function for the

system life. Then

min r(s) < r (T) < max r(s) , < T < t
o<s<xk n- 0

Thus, using

rt r)dr
-0Pn~) e-O,

|.-t).-

-t max r(s) -t min r(s)
O<s<x 0<s<x

e P (t) < e , k and n> N
n

Letting n * and then k + and since xk + 0, we have the value for

lim P (t). The value for lim P (t) is proved similarly.
n n~ n

-38-
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9. A Multi-Failure Generalization

Let us now suppose that it takes i (i > 1) vital component failures

to cause a system failure. Component replacement occurs at a component q

failure or when scheduled. In previous sections i - 1. As before we

suppose there are n, n > i-l, spares and we let v(n,i) denote the

expected life of the system under an optimal schedule when the system

fails at the moment of the ith vital component failure and n spares

are available. Then v(n,i) satisfies the optimality equation

x

v(n,i) - max If F(t)dt + F(x)v(n-l,i) + F(x)v(n-l,i-1)},n > i,i > 1,
O<x<T o

v(i-l,i) - ii (Replacement only occurs at component failures when

n - i-l.),

v(n, O)-0 , n > 0

Let us denote by x(n, i) the largest value that maximizes the above ex-

pression within brackets. The following proposition whose proof by induc-

tion on k : i + n will not be given as it is almost identical with the

*- proof of Lemma 3 of [1].

Proposition 13:

(a) v(n + 1, i + 1)- v(n + 1 i) > v(n, i+ 1)- v(n, i)

(b) v(n + 1, i) - v(n, i) > v(n + 2, i) - v(n + 1, i)

(c) v(ni+l) - v(ni) > v(ni+2) - v(ni+l)

From the le-a of Section 3 and the above proposition we have the

following.

-39-
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Corollary: x(n,i) is decreasing in n and increasing in i.

In addition, it follows analogous to the results of Section 2 that

x(n, i) -T whenever F is NWUE and

r(x(n,i) -v(n-l1i)-v(n-li-1) nl > i i> 1

-40-



10. Further Remarks

Proposition 3 and 13(b) are relevant to the question of how many

spare parts should be stocked. The propositions assert that the

incremental gain in expected life is decreasing in n. Thus, if the

reward associated with a unit of expected life can be compared to the cost

of a spare, there is a determinable N such that it is not economically

efficient to shock n > N spares. Although it seems a reasonable

conjecture, we have not been able to show that n - n- + in n.
n n-1

Suppose, instead of maximizing expected life, it is more relevant to

maximize the probability that the system survives t units of time.

Then, in the case of i - 1, if the intervals between scheduled replace-

ments of n spares is {z, Zn_1 , ... , zI , then

.4"

P{L > t) -IIoF(zi)

where

n
(13) t 0, 0, n

presuming it is always optimal to schedule the use of all spares.

Maximizing P{L > t) subject to (13) is equivalent to maximizing

In 0 log i(zi) subject to (13), a classical allocation of resources

problem. If F is IFR, then log i(z) is concave and it is well-known

that the optimal values of zO, ... , z are equal; i.e., zk - t/n+l,

k - 1, ... , n. If F is DFR then log F(z) is convex and an optimal
t.

schedule is to have z; t, - 0, k- 1, ... , n-1.
n Zk

-41-
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TABLE 1. UNIFORM (0,1) DISTRIBUTION

yi
°in v X U y u

0 .5000 .0000 .5000 .0000
1 .6250 .5000 .5000 .6250 .5000 .5000
2 .6953 .3750 .9375 .6924 .4226 .9106
3 .7417 .3046 1.3471 .7362 .3700 1.2768
4 .7750 .2582 1.7409 .7674 .3312 1.6150
5 .8003 .2249 2.1244 .7911 .3011 1.9336
6 .8203 .1996 2.5007 .8098 .2769 2.2374
7 .8364 .1796 2.8716 .8250 .2570 2.5296
8 .8498 .1635 3.2384 .8377 .2401 2.8122
9 .8610 .1501 3.6019 .8484 .2257 3.0869
10 .8707 .1389 3.9627 .8576 .2132 3.3548
11 .8790 .1292 4.3212 .8656 .2022 3.6167
12 .8864 .1209 4.6779 .8727 .1924 3.8734
13 .8928 .1135 5.0329 .8789 .1837 4.1255
14 .8985 .1071 5.3865 .8845 .1758 4.3734
15 .9037 .1014 5.7389 .8896 .1687 4.6176
16 .9083 .0962 6.0902 .8942 .1622 4.8583
17 .9125 .0916 6.4405 .8983 .1563 5.0959
18 .9163 .0874 6.7900 .9022 .1509 5.3306
19 .9198 .0836 7.1387 .9057 .1458 5.5627
20 .9230 .0801 7.4867 .9089 .1412 5.7922

* 30 .9449 .0566 10.9384 .9315 .1081 7.9797
40 .9570 .0438 14.3581 .9445 .0886 10.0283
50 .9647 .0358 17.7597 .9531 .0756 11.9836
60 .9701 .0303 21.1494 .9592 .0662 13.8699
70 .9740 .0262 24.5309 .9638 .0590 15.7023
80 .9770 .0231 27.9062 .9674 .0534 17.4907
90 .9794 .0207 31.2767 .9703 .0488 19.2422
100 .9813 .0187 34.6435 .9727 .0451 20.9621
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TABLE 2. f(t) - 2e-t( 1 -et)

n xu

0 1.5000 .0000
1 1.7500 1.0986 .7500
2 1.9500 .8472 1.4700
3 2.1224 .7191 2.1763
4 2.2765 .6370 2.8746
5 2.4172 .5785 3.5676
6 2.5476 .5339 4.2570
7 2.6697 .4984 4.9435
8 2.7849 .4693 5.6279
9 2.8943 .4448 6.3105
10 2.9987 .4238 6.9917
11 3.0988 .4056 7.6717
12 3.1950 .3896 8.3507
13 3.2877 .3754 9.0289
14 3.3774 .3626 9.7063
15 3.4643 .3510 10.3830
16 3.5486 .3405 11.0592
17 3.6306 .3310 11.7348
18 3.7105 .3221 12.4100
19 3.7883 .3140 13.0847
20 3.8644 .3064 13.7591
30 4.5454 .2524 20.4878
40 5.1259 .2196 27.1994
50 5.6406 .1970 33.9015
60 6.1078 .1802 40.5972
70 6.5387 .1671 47.2887
80 6.9407 .1565 53.9769
90 7.3188 .1477 60.6626
100 7.6770 .1402 67.3464

-do
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TABLE 3.

_ X V U V U

0 1.5000 .0000 1.5000
1 .6931 1.6250 .7500 1.8333 .6666
2 .6931 1.7812 1.4375 1.9166 1.1666
3 .6000 1.8858 2.1127 2.0536 1.7273
4 .5083 2.0013 2.8136 2.1654 2.3381
5 .4644 2.0930 3.4753 2.2729 2.9437
6 .4195 2.1883 4.1723 2.3670 3.5500
7 .3921 2.2707 4.8328 2.4583 4.1710
8 .3647 2.3537 5.5237 2.5415 4.7807
9 .3454 2.4289 6.1858 2.6222 5.4079
10 .3266 2.5035 6.8714 2.6975 6.0224
11 .3122 2.5730 7.5353 2.7707 6.6524
12 .2983 2.6415 8.2169 2.8401 7.2715
13 .2869 2.7062 8.8822 2.9075 7.9033
14 .2761 2.7699 9.5607 2.9721 8.5263
15 .2669 2.8309 10.2272 3.0351 9.1594
16 .2582 2.8907 10.9033 3.0958 9.7856
17 .2505 2.9483 11.5706 3.1550 10.4197
18 .2433 3.0049 12.2450 3.2124 11.0486
19 .2368 3.0597 12.9128 3.2685 11.6837
20 .2307 3.1135 13.5859 3.3231 12.3149
30 .1878 3.5950 20.2823 3.8116 18.6817
40 .1623 4.0056 26.9702 4.2266 25.0900
50 .1449 4.3699 33.6533 4.5938 31.5261
60 .1321 4.7005 40.3332 4.9267 37.9823
70 .1221 5.0055 47.0109 5.2334 44.4542
80 .1141 5.2900 53.6870 5.5193 50.9386
90 .1075 5.5577 60.3619 5.7881 57.4334
100 .1019 5.8112 67.0359 6.0426 53.9370
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